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Wikipedia: 
https://en.wikipedia.org/wiki/
Double-slit_experiment

Animation by 

G. Mikaberidze
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• State of the computation: 
quantum state (Schroedinger picture)

• Program description: 
discrete sequence of actions (digital)

•

•



• Qubit lattice with fixed 

geometry

• Fixed set of unable couplings

and fields

• program describes how field 

and coupling strengths vary 

over time

• can in principle be universal 



Challenges on Analog Devices:  

• overhead for non-native problems

• mostly restricted to quadratic optimization 

• embedding and problem engineering

• limited possibility for error correction 

• required coupling precision

nested quantum annealing correction

Vinci, Albash, Lidar, 2016

embedding for all-to-all two-body interactions

Lechner, Hauke, Zoller, 2015solving set cover with pairs problem by QA

Cao, Jiang, Perouli, Kais, 2016

Applications: 

• NP-complete combinatorial optimization problems

• sampling and machine learning

• chemistry, biology & materials simulations 

→ heuristic solver for Quadratic Unconstrained

Binary Optimization Problems

Computing by time evolution (annealing)



Program description: 
discrete sequence of actions (digital)
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Program description: 
discrete sequence of actions (digital)
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Input: n,φ,δ ⊲ n – T-count, Rz(φ) – target rotation 
1: m ←⌊(n + 1)/2⌋+ 2 

2: for k = 0,1 do 

3: Lre,k ← FIND-HALVES(cos(φ−πk/8),m,δ) 

4: Lim,k ← FIND-HALVES(sin(φ−πk/8),m,δ) 

5: end for 

6: Interval I ← [0,α] ⊲ Pick α > 0 based on Lre,k,Lim,k

7: while I ∩[0,δ] 6= ∅ do 

8: Find an array A of tuples (ε,a0,b0,a1,b1,k) s.t.: 

• (εre,a0,b0) from Lre,k

• (εim,a1,b1) from Lim,k

• ε = εre + εim and ε ∈ I ∩[0,δ] 

9: Sort A by ε in ascending order 

10: ε1 < ... < εM ← all distinct ε that occur in A 

11: for j = 1 to M do 

12: ∂ ← ∅
13: for all (εj,a0,b0,a1,b1) ∈ A do 

14: x′ ← a0 + b0√2 + i(a1 + b1√2) 

15: n0 ← MIN-T-COUNT(x′,m,k) ⊲ (computes Tk(x′/√2m) 

16: if n = n0 then 

17: ∂ ← ∂ ∪ALL-UNITARIES(x′,m,k) ⊲ minimal unitaries

18: end if 

19: end for 

20: if ∂ 6= ∅ then 

21: return (εj,∂) ⊲ Solution

22: end if 

23: end for 

24: Replace I = [α0,α1] by I = [α1,2α1 −α0] 

25: end while 

26: return (δ,∅) ⊲ No solution
[Kliuchnikov, Maslov, Mosca (2014)]
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Challenges:

• Detecting errors – we can’t look at 

the state

• Correcting errors – an erroneous 

state cannot easily be reset

• No duplication or easy comparison 

of arbitrary quantum states 

• The physical space within which the 

computation takes place is not 

clearly defined
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efficient enough 

decoder

fault-tolerant 

universal gate set

implementable 

in hardware [DiVincenzo 
(2009)]
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Resource 

Management

Error Sources

Validation

Abstraction

• Hardware 

independent 

formulation of 

mathematical 

concepts

• Algorithm 

formulation on a 

logical level

• Encapsulation

• Resource 

requirements

• Correctness of the 

algorithm

• Verifiable behavior

• Algorithmic Errors

• Approximation Errors

• Hardware Errors

• Memory management

• Asynchronous execution

• Classical processing

• Hardware specific 

optimization

→ Hardware specifications

→ Classical/quantum coordination

→ Precision distribution

→ Available information

→ Context dependent dispatch

→ Performance metrics

→ Static vs. runtime

→ Heuristics



Library: variations for each quantum (sub-)routine

User code defining an algorithm, optimization of algorithmic errors

Dependency model of subroutines, constant folding, optimization of the overall error

Subroutine dispatch based on hardware, erasure of subroutine boundaries

Exploiting (de-facto) commutation relations to reduce algorithm cost

Optimization of synthesis errors

Choice of error 

correction code

Determine state distillation routines (possibly dynamic)

Physical layout, “routing” (dynamic and/or look-up)

Applying or tracking error correction, communication for runtime compilation



- What is the relevant information?

- How do we obtain the necessary information?

- How do we represent that information?

- How do we use that information?

- How do we generalize this process?

Formalization of a 
Quantum Computing Architecture






